References
Breiman, L. (2001). Random forest. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brunsdon, C. (1995). Estimating probability surfaces for geographical point data: An adaptive kernel algorithm. Computers & Geosciences, 21(7), 877–894. https://doi.org/10.1016/0098-3004(95)00020-9
Brunsdon, C. (2019, July). RPubs - GWSS - (7th channel network conference). https://rpubs.com/chrisbrunsdon/503649
Brunsdon, C., Fotheringham, A. S., & Charlton, M. (2002). Geographically weighted summary statistics - a framework for localised exploratory data analysis. Computers, Environment and Urban Systems, 26(6), 501–524. https://doi.org/10.1016/s0198-9715(01)00009-6
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69. https://doi.org/10.1007/BF00337288
Lu, B., Harris, P., Charlton, M., & Brunsdon, C. (2014). The GWmodel r package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science, 17(2), 85–101. https://doi.org/10.1080/10095020.2014.917453
Marj Tonini, Axelle Bersier, Jingyan Yu, & Francois Bavaud. (2023, September). An unsupervised learning approach to explore geodemographic clusters in switzerland. ECTQG 2023 Proceedings. 23rd european colloquium on theoretical and quantitative geography. https://ucpages.uc.pt/site/assets/files/1249198/ectqg_2023_proceedings_final.pdf
Micheletti, N., Tonini, M., & Lane, S. N. (2017). Geomorphological activity at a rock glacier front detected with a 3D density-based clustering algorithm. Geomorphology, 278, 287–297. https://doi.org/10.1016/j.geomorph.2016.11.016
Nakaya, T., & Yano, K. (2010). Visualising crime clusters in a space-time cube: An exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Transactions in GIS, 14(3), 223–239. https://doi.org/10.1111/j.1467-9671.2010.01194.x
Naur, Peter. (1974). Concise survey of computer methods. New York : Petrocelli Books. https://archive.org/details/concisesurveyofc0000naur
Spielman, S. E., & Thill, J.-C. (2008). Social area analysis, data mining, and GIS. Computers, Environment and Urban Systems, 32(2), 110–122. https://doi.org/10.1016/j.compenvurbsys.2007.11.004
Tonini, M., D’Andrea, M., Biondi, G., Degli Esposti, S., Trucchia, A., & Fiorucci, P. (2020). A machine learning-based approach for wildfire susceptibility mapping. The case study of the liguria region in italy. Geosciences, 10(3), 105. https://doi.org/10.3390/geosciences10030105
Tonini, M., Pereira, M. G., Parente, J., & Vega Orozco, C. (2017). Evolution of forest fires in portugal: From spatio-temporal point events to smoothed density maps. Natural Hazards, 85(3), 1489–1510. https://doi.org/10.1007/s11069-016-2637-x
Trucchia, A., Izadgoshasb, H., Isnardi, S., Fiorucci, P., & Tonini, M. (2022). Machine-learning applications in geosciences: Comparison of different algorithms and vegetation classes’ importance ranking in wildfire susceptibility. Geosciences, 12(11), 424. https://doi.org/10.3390/geosciences12110424